
Observations From xDSMLs to DSTLs Conclusion and future work

Leveraging Executable Language Engineering for
Domain-Specific Transformation Languages

(Position Paper)
EXE 2016, Saint-Malo, France

Erwan Bousse 1 Manuel Wimmer 1 Wieland Schwinger 2

Elisabeth Kapsammer 2

1TU Wien, Austria

2JKU Linz, Austria

October 3, 2016

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 1/10



Observations From xDSMLs to DSTLs Conclusion and future work

Observations

Domain Specific Transformation Language (DSTL) =
model transformation language tailored for specific tasks (eg.
strings renaming, code generation)

DSTLs more and more common:
– Two papers on DSTLs at ICMT’16 in a dedicated “Model

Transformation Languages” session
– This year TTC’16 use case: data-flow based DSTL
– Increasing need for methods to develop DSTLs

Progress in executable Domain-Specific Modeling language
(xDSML) engineering:

– Generic syntactic services (eg. editors using Xtext or Sirius)
– Generic runtime services (eg. debugger using GEMOC studio)
– Easier and easier to obtain a tool-supported xDSML

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 2/10



Observations From xDSMLs to DSTLs Conclusion and future work

Observations

Domain Specific Transformation Language (DSTL) =
model transformation language tailored for specific tasks (eg.
strings renaming, code generation)

DSTLs more and more common:
– Two papers on DSTLs at ICMT’16 in a dedicated “Model

Transformation Languages” session
– This year TTC’16 use case: data-flow based DSTL
– Increasing need for methods to develop DSTLs

Progress in executable Domain-Specific Modeling language
(xDSML) engineering:

– Generic syntactic services (eg. editors using Xtext or Sirius)
– Generic runtime services (eg. debugger using GEMOC studio)
– Easier and easier to obtain a tool-supported xDSML

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 2/10



Observations From xDSMLs to DSTLs Conclusion and future work

Observations

Domain Specific Transformation Language (DSTL) =
model transformation language tailored for specific tasks (eg.
strings renaming, code generation)

DSTLs more and more common:
– Two papers on DSTLs at ICMT’16 in a dedicated “Model

Transformation Languages” session
– This year TTC’16 use case: data-flow based DSTL
– Increasing need for methods to develop DSTLs

Progress in executable Domain-Specific Modeling language
(xDSML) engineering:

– Generic syntactic services (eg. editors using Xtext or Sirius)
– Generic runtime services (eg. debugger using GEMOC studio)
– Easier and easier to obtain a tool-supported xDSML

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 2/10



Observations From xDSMLs to DSTLs Conclusion and future work

Questions

Is it possible to apply techniques from xDSML
engineering to define DSTLs?

How are xDSMLs and DSTLs related?

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 3/10



Observations From xDSMLs to DSTLs Conclusion and future work

Questions

Is it possible to apply techniques from xDSML
engineering to define DSTLs?

How are xDSMLs and DSTLs related?

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 3/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*

Petri net model

(t1 fired) (t2 fired)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*

Petri net model

(t1 fired) (t2 fired)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*
Place

+name: string
+initialTokens: int

p1 p3 p4

p2

init=1 init=0 init=0

init=1

Petri net model

(t1 fired) (t2 fired)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*
Place

+name: string
+initialTokens: int

Transition
+name: string

Place
+name: string
+initialTokens: int

p1 p3 p4

p2

init=1 init=0 init=0

init=1

t1 t2

Petri net model

(t1 fired) (t2 fired)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*

p1 p3 p4

p2

init=1 init=0 init=0

init=1

t1 t2

Petri net model

(t1 fired) (t2 fired)

co
nf
or
m
s t
o

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*
Place

+name: string
+initialTokens: int

Transition
+name: string

Place
+name: string
+initialTokens: int

imports

imports
State Metamodel

PlaceState
+tokens: int

Execution transformation rules (summarized)

: while there is an enabled transition, fires it.
: removes a token from each input Place and adds a token to each output Place.
run(Net)
fire(Transition)

Transition
+name: string

Operational
semantics

: while there is an enabled transition, fires it.
: removes a token from each input Place, and adds a token to each output Place.

place
1

p1 p3 p4

p2

init=1 init=0 init=0

init=1

t1 t2

Petri net model

(t1 fired) (t2 fired)

co
nf
or
m
s t
o

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*
Place

+name: string
+initialTokens: int

Transition
+name: string

Place
+name: string
+initialTokens: int

imports

imports
State Metamodel

PlaceState
+tokens: int

Execution transformation rules (summarized)

: while there is an enabled transition, fires it.
: removes a token from each input Place and adds a token to each output Place.
run(Net)
fire(Transition)

Transition
+name: string

Operational
semantics

: while there is an enabled transition, fires it.
: removes a token from each input Place, and adds a token to each output Place.

place
1

p1 p3 p4

p2

init=1 init=0 init=0

init=1

t1 t2

Petri net model
initialization−−−−−−−→

p1 p3 p4

p2

t1 t2

Executed model

(t1 fired) (t2 fired)

co
nf
or
m
s t
o conform

s to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*
Place

+name: string
+initialTokens: int

Transition
+name: string

Place
+name: string
+initialTokens: int

imports

imports
State Metamodel

PlaceState
+tokens: int

Execution transformation rules (summarized)

: while there is an enabled transition, fires it.
: removes a token from each input Place and adds a token to each output Place.
run(Net)
fire(Transition)

Transition
+name: string

Operational
semantics

: while there is an enabled transition, fires it.
: removes a token from each input Place, and adds a token to each output Place.

place
1

p1 p3 p4

p2

init=1 init=0 init=0

init=1

t1 t2

Petri net model
initialization−−−−−−−→

p1 p3 p4

p2

t1 t2

Executed model
(t1 fired)

(t2 fired)

co
nf
or
m
s t
o conform

s to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of Petri nets xDSML and model

Abstract Syntax

input
1..*

output
1..*

Net

Place
+name: string
+initialTokens: int

Transition
+name: string

places
*transitions

*
Place

+name: string
+initialTokens: int

Transition
+name: string

Place
+name: string
+initialTokens: int

imports

imports
State Metamodel

PlaceState
+tokens: int

Execution transformation rules (summarized)

: while there is an enabled transition, fires it.
: removes a token from each input Place and adds a token to each output Place.
run(Net)
fire(Transition)

Transition
+name: string

Operational
semantics

: while there is an enabled transition, fires it.
: removes a token from each input Place, and adds a token to each output Place.

place
1

p1 p3 p4

p2

init=1 init=0 init=0

init=1

t1 t2

Petri net model
initialization−−−−−−−→

p1 p3 p4

p2

t1 t2

Executed model
(t1 fired) (t2 fired)

co
nf
or
m
s t
o conform

s to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 4/10



Observations From xDSMLs to DSTLs Conclusion and future work

Generalizing xDSMLs

Abstract
syntax

xDSML

Executable
model

Parameter
metamodel

State
metamodel

Parameter
model

Execution
state

Execution
transformation

Model

Model
transformation

data flow

depends on / uses

conforms to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 5/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

MiniTL model

(AToB app.) (AToB app.)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

MiniTL model

(AToB app.) (AToB app.)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

Transformation

MiniTL model

(AToB app.) (AToB app.)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

TransformationTransformation

Rule
+name: string

MiniTL model

(AToB app.) (AToB app.)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

TransformationTransformation

Rule
+name: string

Rule
+name: string

ObjectTemplate
+name: string

MiniTL model

(AToB app.) (AToB app.)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

MiniTL model

(AToB app.) (AToB app.)

co
nf
or
m
s t
o

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

TransformationTransformation

Rule
+name: string

Rule
+name: string

ObjectTemplate
+name: string

imports

Operational
semantics

Execution transformation rules (partial)

: while there is an enabled transition, fires it.
oves a token from each input Place and adds a token to each output Place.
run(Transformation)
apply(Rule)

: applies all the rules
: while there is a match, applies the rule on the match

EObjecteClass
1

State metamodel (partial)

transformation
1

currentRule
0..1

outputModel
*

imports

ObjectTemplate
+name: string

TransformationState

MiniTL model

(AToB app.) (AToB app.)

co
nf
or
m
s t
o

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

TransformationTransformation

Rule
+name: string

Rule
+name: string

ObjectTemplate
+name: string

imports

Operational
semantics

Execution transformation rules (partial)

: while there is an enabled transition, fires it.
oves a token from each input Place and adds a token to each output Place.
run(Transformation)
apply(Rule)

: applies all the rules
: while there is a match, applies the rule on the match

EObjecteClass
1

State metamodel (partial)

transformation
1

currentRule
0..1

outputModel
*

imports

ObjectTemplate
+name: string

TransformationState

MiniTL model

initialization−−−−−−−→
Output model

Executed model

(AToB app.) (AToB app.)

co
nf
or
m
s t
o conform
s
to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

TransformationTransformation

Rule
+name: string

Rule
+name: string

ObjectTemplate
+name: string

imports

Operational
semantics

Execution transformation rules (partial)

: while there is an enabled transition, fires it.
oves a token from each input Place and adds a token to each output Place.
run(Transformation)
apply(Rule)

: applies all the rules
: while there is a match, applies the rule on the match

EObjecteClass
1

State metamodel (partial)

transformation
1

currentRule
0..1

outputModel
*

imports

ObjectTemplate
+name: string

TransformationState

MiniTL model

initialization−−−−−−−→
Output model

:B

y = "1_out"

Executed model
(AToB app.)

(AToB app.)

co
nf
or
m
s t
o conform
s
to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Example of MiniTL DSTL and model

Abstract Syntax (partial)

Transformation

Rule
+name: string

rules
*

Ecore (partial)

EClass

input

output

type 1
imports

ObjectTemplate
+name: string

TransformationTransformation

Rule
+name: string

Rule
+name: string

ObjectTemplate
+name: string

imports

Operational
semantics

Execution transformation rules (partial)

: while there is an enabled transition, fires it.
oves a token from each input Place and adds a token to each output Place.
run(Transformation)
apply(Rule)

: applies all the rules
: while there is a match, applies the rule on the match

EObjecteClass
1

State metamodel (partial)

transformation
1

currentRule
0..1

outputModel
*

imports

ObjectTemplate
+name: string

TransformationState

MiniTL model

initialization−−−−−−−→
Output model

:B

y = "1_out"

:B

y = "2_out"

Executed model
(AToB app.) (AToB app.)

co
nf
or
m
s t
o conform
s
to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 6/10



Observations From xDSMLs to DSTLs Conclusion and future work

Generalizing DSTLs as specific xDSMLs

Abstract
syntax

DSTL

Engine state
metamodel

Transformation and
metamodels

Types

Metamodeling
language

InstancesInstances

Output
and
state Engine

State

Output
model

Input
model

Input
metamodel

Output
metamodel

Model
transformation

Transformation
engine

(EClass, ERef., ...)

(EObject)

Executable
model

Parameter
metamodel

State
metamodel

Parameter
model

Execution
state

Model

Model
transformation

data flow

depends on / uses

conforms to

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 7/10



Observations From xDSMLs to DSTLs Conclusion and future work

Research directions

Experiment with generic and generative approaches for
DSTL engineering:

– Reuse xDSML engineering approaches , eg. getting a debugger
“for free” for a given DSTL

– Define/adapt new generic approaches for DSTL engineering

Evaluate the implications of DSTL specificities : eg. can we
generate a usable/relevant debugger using generic approaches?

DSTLs as case studies for xDSML engineering (cf. TTC’16)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 8/10



Observations From xDSMLs to DSTLs Conclusion and future work

Research directions

Experiment with generic and generative approaches for
DSTL engineering:

– Reuse xDSML engineering approaches , eg. getting a debugger
“for free” for a given DSTL

– Define/adapt new generic approaches for DSTL engineering

Evaluate the implications of DSTL specificities : eg. can we
generate a usable/relevant debugger using generic approaches?

DSTLs as case studies for xDSML engineering (cf. TTC’16)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 8/10



Observations From xDSMLs to DSTLs Conclusion and future work

Research directions

Experiment with generic and generative approaches for
DSTL engineering:

– Reuse xDSML engineering approaches , eg. getting a debugger
“for free” for a given DSTL

– Define/adapt new generic approaches for DSTL engineering

Evaluate the implications of DSTL specificities : eg. can we
generate a usable/relevant debugger using generic approaches?

DSTLs as case studies for xDSML engineering (cf. TTC’16)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 8/10



Observations From xDSMLs to DSTLs Conclusion and future work

Conclusion and future work

Just an observation: DSTLs are a sort of xDSMLs, complex
and with interesting characteristics
Prospects:

– Use state of the art xDSML engineering for DSTL engineering?
– Consider DSTLs as nice case studies for model execution?

Future work
Short term: Experiment (more) xDSML engineering on some
transformation languages, eg. MiniTL
Long term: analyse a DSTL to automatically provide it with a
white-box testing framework (test model generation, coverage
metrics, fault localization, etc.)

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 9/10



Appendix

Done!

Thank you! ,

Implementation of MiniTL example:
https://github.com/tetrabox/minitl

Contact:
erwan.bousse@tuwien.ac.at
http://big.tuwien.ac.at/staff/ebousse

Research project:
TETRA Box: http://modeltransformation.net/tetrabox/
we have funding and an open position for a PhD student!

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 10/10



Appendix

Generalisation of Metamodel-specific DSTLs

Input
model

Abstract
syntax

Transformation
engine

DSTL specific to M1 and M2

Model
transformation

Input
metamodel M1

State and output

Engine state
metamodel

Output
metamodel M2

Execution state metamodel

Output
model

Engine
state

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 10/10



Appendix

Screenshot of MiniTL debugging session

Bousse, Wimmer, Schwinger, Kapsammer Leveraging Executable Lang. Engineering for DSTLs 10/10


	Observations
	From xDSMLs to DSTLs
	Conclusion and future work
	Appendix

