
APPENDIX: DEMONSTRATION

In the first phase of the demonstration, we will show how
the Pac-Man DSL is defined in the language workbench of
the GEMOC Studio. We will first show how the non-reactive
language is defined, and then show how it is made reactive by
annotating execution rules from the operational semantics as
event handlers. Then, we will give an overview of the artifacts
generated from these annotation and the definition of the DSL,
that is the behavioral interface for the Pac-Man DSL.

In the second phase of the demonstration, we will show how
a game can be defined using an editor we implemented on
top of the abstract syntax of the Pac-Man DSL. We will then
demonstrate the result by playing a Pac-Man game.

We will then go back to the language workbench, and
annotate the modifySpeed execution rule as an event. After
regenerating the behavioral language interface, we will bind
the new event to a key and then launch another game, in which
we will be able to send the new event to cheat by increasing
the speed of the pacman.



Fig. 4: Overview of the language workbench and of a Pac-Man game being played.




