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Technology for collection, aggregation, and analysis of data from 

range of devices to optimize  operation of a system in different 

domains, including buildings, traffic, health care, energy, 

business, industry
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And, please, don’t 

forget to buy milk 

again! You should walk these 

short distances in the 

future.

Can you turn me 

around? 

I look fuller from 

the other side.

The Internet of Things (IoT)
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IoT: Core Characteristics
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MDE

� MDE = notations, techniques, tools to leverage abstraction

and automation for system development

� Examples for abstraction and automation

• Virtual memory [Denning 1970]

• Internet Protocol [Cerf 2017]

� Examples for MDE

• Robotics software [SPARC 2016]

• Industrial DSLs (e.g., at Ericsson)

• Game development (e.g., in Unity)

4

[Cerf 2017] V.G. Cerf. In Praise of Underspecification? CACM 60(8):7. Aug 2017

[Denning 1970] P. Denning. Virtual Memory. ACM Computing Surveys 2(3):153-189. 1970

[SPARC 2016] SPARC. Robotics 2020 Multi-Annual Roadmap: For Robotics in Europe, 

Horizon 2020 Call ICT-2017 (ICT-25, ICT-27 & ICT-28). Dec 2016.



Overview of Talk

5

distributed
open

heterogenous

self-optimizing

context-aware

adaptive

autonomous
large scale

timed

reactive

concurrent

EXE'17

available

reliable

UML-RT with

Papyrus-RT
MQTT

monitoring

animation

runtime verification

steering 

adaption

Connecting
Debugging Changing 

@ runtime



Goal of Talk

� Inform

• MDE with UML-RT and Papyrus-RT and extensions

� Inspire

• Use, extend, participate
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Open Source!
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Background

MDE with UML-RT
and Papyrus-RT
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UML-RT: History

� Real-time OO Modeling (ROOM)

• ObjecTime, early 1990 ties

� Major influence on UML 2

• E.g., StructuredClassifier

� “RT subset of UML”

� Tools

• ObjecTime Developer

• IBM Rational RoseRT

• IBM RSA-RTE

• Protos ETrice

• Eclipse Papyrus-RT
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[Selic, Gullekson, Ward. 
Real-Time Object-Oriented 
Modellng. Wiley. 1994]

J. Dingel



UML-RT: Characteristics

� Domain-specific

• Embedded systems with soft real-time constraints

� Graphical, but textual syntax exists

� Small, cohesive set of concepts

� Strong encapsulation

• Actors (active objects)

• Explicit, typed interfaces

• Message-based communication

� Event-driven execution

• State machines

� Lots of analysis opportunities
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Real-time System

• actors

• state

outputs = 

f(state,inputs)

inputs
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“UML-RT has features that appeal to the formalist” 

[Whittaker et al 2000]

[Whittaker et al 2000] P. Whittaker, M. Goldsmith, K. Macolini, T. Teitelbaum. “Model checking UML-RT protocols”. 

Workshop on Formal Design Techniques for Real-Time UML. York, UK. Nov. 2000.
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UML-RT: Core Concepts (1)

� Types

• Capsules (active classes)

° Capsule instances (parts)

• Passive classes (data classes)

° Objects

• Protocols

• Enumerations

� Structure

• Attributes

• Ports

• Connectors
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� Behaviour

• Messages (events)

• State machines

� Grouping

• Package

� Relationship

• Generalization

• Associations
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UML-RT:          

Core Concepts (2)

� Model 

• Collection of capsule definitions 

• ‘Top’ capsule containing collection of parts (capsule 

instances)

� Capsules

• May contain

° Attributes, ports, or other parts

• Behaviour defined by state machine

� Ports 

• Typed over protocol defining input and output messages

� State machine

• Transition triggered by incoming messages

• Action code can contain send statements that send 

messages over certain ports
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Capsules (1)
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� Kind of active class

• Attributes, operations

• Own, independent flow                                              

of control (logical thread)

� May also contain 

• Ports over which messages can be sent, received

• Parts (instances of other capsules) and connectors 

� Creation, use of instances tightly controlled

• Created by runtime system (RTS) 

• Cannot be passed around 

• Stored in attribute of another capsule (part)

• Information flow only via messages sent to ports

⇒ better concurrency control and encapsulation

� Behaviour defined by state machine

J. Dingel



Protocols
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� Provide types for ports

� Define

• Input messages

° Services provided by capsule owning port

• Output messages

° Services required by capsule owning port

• Input/output messages

� Messages can carry data

J. Dingel



Ports
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� “Boundary objects” owned by capsule

� Typed over a protocol P

� Have  ‘send ’  operation

portName.msg(arg1,...,argn).send()

� E.g., in Pinger

pingPort.ping().send()

J. Dingel



Ports: External, Internal, Relay

� External behaviour

• Provides (part of) externally visible functionality (isService=true)

• Incoming messages passed on to state machine (isBehaviour=true)

• Must be connected (isWired=true)

� Internal behaviour

• As above, but not externally visible (isService=false)

• Connect state machine with a capsule part

� Relay

• Pass external messages to and from capsule parts
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relay  

internal

external

external or relay  
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Ports: System

� Connects capsule to Runtime System (RTS)                                        

library via corresponding system protocol 

� Provides access to RTS services such as                                                               

• Timing: setting timers, time out message

° timer2Port.informIn(UMLRTTimespec(10, 0));      

// set timer that will expire in 10 secs and 0 nano secs

° When timer expires, ‘timeout ’ message will be sent over timer2Port

• Log: sending text to console

° logPort.log(“Ready to self-destruct”)
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Application code 
(generated or hand-written)

RTS Library

Target OS

Target HW
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Ports: SPP and SAP

� So far, only wired ports

• Connected automatically when instances are created

� Unwired ports

• Original intent: ‘layered’ design

• Connected at run-time

° Port on provider: Service Provision Point (SPP)

° Port on user: Service Access Point (SAP)

° Register with RTS using unique service name (manually or automatic)

EXE'17 17J. Dingel



Example: Ping Pong
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Example: Ping Pong
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Papyrus-RT: Overview
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� Papyrus for Real-Time industrial-grade, complete modeling 

environment for the development of complex, software 

intensive, real-time, embedded, cyber-physical systems.

� Part of PolarSys

• Eclipse Working Group

• Open source for embedded systems

� Building on 

• Eclipse Modeling Framework (EMF), Xtext, Papyrus

� History

• 2015: V0.7.0

• March 2017: v0.9

• Fall 2017: v1.0 [https://wiki.eclipse.org/Papyrus-RT]

J. Dingel



Resources: UML-RT and Papyrus-RT

� UML-RT

• Papers:

° B. Selic. Using UML for Modeling Complex Real-time Systems. Workshop 

on Languages, Compilers, and Tools for Embedded Systems (LCTES’98)

° E. Posse, J. Dingel. An Executable Semantics for UML-RT. SoSyM

15(1):179-217. 2016

• Tutorials:

° MODELS’17, http://flux.cs.queensu.ca/mase/papyrus-rt-

resources/supporting-material-for-the-models17-tutorial/

° EclipseCon’17, http://flux.cs.queensu.ca/mase/papyrus-rt-

resources/supporting-material-for-eclipsecon17-unconference/

� Papyrus-RT

• Distribution: https://eclipse.org/papyrus-rt

• Wiki: https://wiki.eclipse.org/Papyrus-RT

• Overview: https://www.youtube.com/watch?v=UqefL7-ZPYo
21EXE'17

This 

afternoon!
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Ongoing Research 1

Connecting
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From Isolated to Connected
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Mechanism 1: Gateway Capsule

� Using SAP/SPP 

• Protocol defines incoming/outgoing messages 

• Automatic registration

� Bi-directional

• Incoming messages can trigger transitions

24

External 

tool
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Gateway Capsule: Example
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Gateway Capsule: Examples

� Monitoring and steering 

• Parcel routing system

• https://www.youtube.com/watch?v=Eb

MIgEX9O58

26EXE'17J. Dingel

� Animation and simulation

using Unity

[Diagrams courtesy

Michal Pasternak]



Mechanism 2: MQTT

� Message Queue Telemetry Transport (MQTT)

• Publish/subscribe protocol

• Light-weight, low resource requirements

• Easy to use: 

(dis-)connect, (un-)subscribe, publish

• Standardized

� Implementations

• E.g., Eclipse Paho

� Brokers

• E.g., Eclipse Mosquitto
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Topic Subscribers

“Temperature/bedroom” Component 2

… …
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MQTT Support in Papyrus-RT

� In model  

• Subscribe(t) in capsule C

° register unwired port of C as SAP under name t

• Publish(t,m) in capsule C

° send m to port of C associated with t

� RTS

• Maintains connection to broker(s) and 

topic/broker table

• Sends published messages to corresponding 

broker(s)

• Periodically checks brokers for incoming 

messages

• Sends incoming message m to port associated 

with m
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Component 2

Broker

RTS
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Ongoing Research 2

Debugging
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Model Debugging: Two Approaches

1. Interpretation

• Pros

° Easier to integrate into MDE environment

• Cons

° Two semantics: Interpreter vs code generator

° Two platforms: Modeling platform vs target platform

2. Executing generated code on target platform

• Pros

° One semantics, one platform

• Cons

° How to implement?

30EXE'17J. Dingel



Existing Approaches
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[Diagram courtesy Mojtaba Bagherzadeh]

Consequences?



Our Approach

Key idea: Use model transformation to enrich model to allow 

it to support debugging operations:

• Execution stop and resume (breakpoints),

• variable access, 

• collection of execution traces

32EXE'17J. Dingel

[Diagram courtesy 

Mojtaba Bagherzadeh]
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Example: Ping Pong

[Diagram courtesy Mojtaba Bagherzadeh]
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Transformation of Structure

[Diagram courtesy Mojtaba Bagherzadeh]
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User-defined model

Instrumented model
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Transformation of Behaviour

[Diagram courtesy Mojtaba Bagherzadeh]



Overview
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[Diagram courtesy 

Mojtaba Bagherzadeh]

Pre 

runtime

At

runtime
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List running capsules:
#list 

Step execution
#next –c capsule1

View last 10 events
#view –c capsule1 –n 10

Generate sequence diagram:
#seq –c capsuleName

EXE'17J. Dingel

Example: Command Line Interface

[Diagram courtesy Mojtaba Bagherzadeh]



Evaluation

� Instrumentation time

~40sec for model with 400 transitions

� Program size

comparable with existing approaches

� Runtime performance overhead

microseconds per transition
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Resources: Model-level Debugging

� Paper

• M. Bagherzadeh, N. Hili, J. Dingel. Model-level, Platform-

independent Debugging in the Context of the Model-driven 

Development of Real-time Systems. ESEC/FSE’17. 

� Videos

• CLI: https://www.youtube.com/watch?v=UJ4BYSOrTOQ

• GUI: https://www.youtube.com/watch?v=PvPbV5QkQ9Y&t=8s

� Code with tutorial

• https://github.com/moji1/MDebugger

� Virtual Box image 

• https://github.com/moji1/MDebugger
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Ongoing Research 3

EXE'17J. Dingel

Changing @ runtime



Supporting Modifications at Runtime

� A.k.a., “hot patching/loading”,  dynamic software updating

� As in, e.g., Erlang, Java Hotswap, Unreal engine, MS VS Recode 
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Modify

Build

Exec

Modify

Build

Exec
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Supporting Modifications at Runtime (Cont’d)

� Use shared, dynamically loaded and linked objects

• Compile dynamically modifiable capsules into shared objects

• Whenever capsule changes, 

° recompile and relink, and

° transfer state

� Challenge

• State transfer can lead to inconsistencies

� Demo

• https://youtu.be/FrJm9NTR-bc

� Ongoing

• Minimizing inconsistencies

• Roll back

42EXE'17J. Dingel
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Ongoing Research 4

Demonstrator: 
PolarSys Rover
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� PolarSys Rover

• 2 motors, motor controller

• Line sensor, ultrasonic detection 

sensor, camera

• https://www.polarsys.org/projects/polar

sys.rover

� Raspberry Pi 3 Model B

• 1.2GHz 64-bit Quad-core, 1GB RAM

• WLAN, Bluetooth, 4 USB, HDMI, 

Ethernet

44/37EXE'17J. Dingel

https://www.youtube.com/watch?v=2kLhRUHGLB4

[UML-RT slides courtesy of Nicolas Hili]
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Conclusion
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Conclusion 

MDE with UML-RT and Papryrus-RT

+ Connecting (gateway, MQTT)

+ Debugging 

+ Change at RT 

+ Distribution 

+ Deployment (MARTE)

+ Schedulability

+ Testing

+ ?

=  Open source MDE tool infrastructure for (certain kinds of) 

IoT applications
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This talk

Future work
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Resources

� http://flux.cs.queensu.ca/mase/papyrus-rt-resources/
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Thank you …

… for your attention
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Hey you shrub, do you always have to 

have the last word?


