
Towards an open source

MDE tool infrastructure

for the Internet of Things

Juergen Dingel

Sept 18, 2017

Technology for collection, aggregation, and analysis of data from

range of devices to optimize operation of a system in different

domains, including buildings, traffic, health care, energy,

business, industry

2 2

And, please, don’t

forget to buy milk

again! You should walk these

short distances in the

future.

Can you turn me

around?

I look fuller from

the other side.

The Internet of Things (IoT)

EXE'17

IoT: Core Characteristics

3

distributed
open

heterogenous

self-optimizing

context-aware

adaptive

autonomous
large scale

timed

reactive

concurrent

Bla,
…

Bla,
…

Bla,
…

Bla,
…

Bla,
…

Bla,
…

Bla,
…

Bla,
…

EXE'17

available

reliable

J. Dingel

MDE

� MDE = notations, techniques, tools to leverage abstraction

and automation for system development

� Examples for abstraction and automation

• Virtual memory [Denning 1970]

• Internet Protocol [Cerf 2017]

� Examples for MDE

• Robotics software [SPARC 2016]

• Industrial DSLs (e.g., at Ericsson)

• Game development (e.g., in Unity)

4

[Cerf 2017] V.G. Cerf. In Praise of Underspecification? CACM 60(8):7. Aug 2017

[Denning 1970] P. Denning. Virtual Memory. ACM Computing Surveys 2(3):153-189. 1970

[SPARC 2016] SPARC. Robotics 2020 Multi-Annual Roadmap: For Robotics in Europe,

Horizon 2020 Call ICT-2017 (ICT-25, ICT-27 & ICT-28). Dec 2016.

Overview of Talk

5

distributed
open

heterogenous

self-optimizing

context-aware

adaptive

autonomous
large scale

timed

reactive

concurrent

EXE'17

available

reliable

UML-RT with

Papyrus-RT
MQTT

monitoring

animation

runtime verification

steering

adaption

Connecting
Debugging Changing

@ runtime

Goal of Talk

� Inform

• MDE with UML-RT and Papyrus-RT and extensions

� Inspire

• Use, extend, participate

6EXE'17J. Dingel

Open Source!

7

Background

MDE with UML-RT
and Papyrus-RT

EXE'17J. Dingel

UML-RT: History

� Real-time OO Modeling (ROOM)

• ObjecTime, early 1990 ties

� Major influence on UML 2

• E.g., StructuredClassifier

� “RT subset of UML”

� Tools

• ObjecTime Developer

• IBM Rational RoseRT

• IBM RSA-RTE

• Protos ETrice

• Eclipse Papyrus-RT

EXE'17 8

[Selic, Gullekson, Ward.
Real-Time Object-Oriented
Modellng. Wiley. 1994]

J. Dingel

UML-RT: Characteristics

� Domain-specific

• Embedded systems with soft real-time constraints

� Graphical, but textual syntax exists

� Small, cohesive set of concepts

� Strong encapsulation

• Actors (active objects)

• Explicit, typed interfaces

• Message-based communication

� Event-driven execution

• State machines

� Lots of analysis opportunities

EXE'17 9

Real-time System

• actors

• state

outputs =

f(state,inputs)

inputs

inputs

out2

out1

out2

…

in2

in2

…

in1

in1

…

“UML-RT has features that appeal to the formalist”

[Whittaker et al 2000]

[Whittaker et al 2000] P. Whittaker, M. Goldsmith, K. Macolini, T. Teitelbaum. “Model checking UML-RT protocols”.

Workshop on Formal Design Techniques for Real-Time UML. York, UK. Nov. 2000.

J. Dingel

UML-RT: Core Concepts (1)

� Types

• Capsules (active classes)

° Capsule instances (parts)

• Passive classes (data classes)

° Objects

• Protocols

• Enumerations

� Structure

• Attributes

• Ports

• Connectors

EXE'17 10

� Behaviour

• Messages (events)

• State machines

� Grouping

• Package

� Relationship

• Generalization

• Associations

J. Dingel

UML-RT:

Core Concepts (2)

� Model

• Collection of capsule definitions

• ‘Top’ capsule containing collection of parts (capsule

instances)

� Capsules

• May contain

° Attributes, ports, or other parts

• Behaviour defined by state machine

� Ports

• Typed over protocol defining input and output messages

� State machine

• Transition triggered by incoming messages

• Action code can contain send statements that send

messages over certain ports

EXE'17 11J. Dingel

Capsules (1)

EXE'17 12

� Kind of active class

• Attributes, operations

• Own, independent flow

of control (logical thread)

� May also contain

• Ports over which messages can be sent, received

• Parts (instances of other capsules) and connectors

� Creation, use of instances tightly controlled

• Created by runtime system (RTS)

• Cannot be passed around

• Stored in attribute of another capsule (part)

• Information flow only via messages sent to ports

⇒ better concurrency control and encapsulation

� Behaviour defined by state machine

J. Dingel

Protocols

EXE'17 13

� Provide types for ports

� Define

• Input messages

° Services provided by capsule owning port

• Output messages

° Services required by capsule owning port

• Input/output messages

� Messages can carry data

J. Dingel

Ports

14

� “Boundary objects” owned by capsule

� Typed over a protocol P

� Have ‘send ’ operation

portName.msg(arg1,...,argn).send()

� E.g., in Pinger

pingPort.ping().send()

J. Dingel

Ports: External, Internal, Relay

� External behaviour

• Provides (part of) externally visible functionality (isService=true)

• Incoming messages passed on to state machine (isBehaviour=true)

• Must be connected (isWired=true)

� Internal behaviour

• As above, but not externally visible (isService=false)

• Connect state machine with a capsule part

� Relay

• Pass external messages to and from capsule parts

EXE'17 15

relay

internal

external

external or relay

J. Dingel

Ports: System

� Connects capsule to Runtime System (RTS)

library via corresponding system protocol

� Provides access to RTS services such as

• Timing: setting timers, time out message

° timer2Port.informIn(UMLRTTimespec(10, 0));

// set timer that will expire in 10 secs and 0 nano secs

° When timer expires, ‘timeout ’ message will be sent over timer2Port

• Log: sending text to console

° logPort.log(“Ready to self-destruct”)

EXE'17 16

Application code
(generated or hand-written)

RTS Library

Target OS

Target HW

J. Dingel

Ports: SPP and SAP

� So far, only wired ports

• Connected automatically when instances are created

� Unwired ports

• Original intent: ‘layered’ design

• Connected at run-time

° Port on provider: Service Provision Point (SPP)

° Port on user: Service Access Point (SAP)

° Register with RTS using unique service name (manually or automatic)

EXE'17 17J. Dingel

Example: Ping Pong

EXE'17 18J. Dingel

Example: Ping Pong

EXE'17 19

Papyrus-RT: Overview

EXE'17 20

� Papyrus for Real-Time industrial-grade, complete modeling

environment for the development of complex, software

intensive, real-time, embedded, cyber-physical systems.

� Part of PolarSys

• Eclipse Working Group

• Open source for embedded systems

� Building on

• Eclipse Modeling Framework (EMF), Xtext, Papyrus

� History

• 2015: V0.7.0

• March 2017: v0.9

• Fall 2017: v1.0 [https://wiki.eclipse.org/Papyrus-RT]

J. Dingel

Resources: UML-RT and Papyrus-RT

� UML-RT

• Papers:

° B. Selic. Using UML for Modeling Complex Real-time Systems. Workshop

on Languages, Compilers, and Tools for Embedded Systems (LCTES’98)

° E. Posse, J. Dingel. An Executable Semantics for UML-RT. SoSyM

15(1):179-217. 2016

• Tutorials:

° MODELS’17, http://flux.cs.queensu.ca/mase/papyrus-rt-

resources/supporting-material-for-the-models17-tutorial/

° EclipseCon’17, http://flux.cs.queensu.ca/mase/papyrus-rt-

resources/supporting-material-for-eclipsecon17-unconference/

� Papyrus-RT

• Distribution: https://eclipse.org/papyrus-rt

• Wiki: https://wiki.eclipse.org/Papyrus-RT

• Overview: https://www.youtube.com/watch?v=UqefL7-ZPYo
21EXE'17

This

afternoon!

22

Ongoing Research 1

Connecting

EXE'17J. Dingel

From Isolated to Connected

23

Model M

C/C++

cgen

Model M

C/C++

Animation 1

SimulationRuntime

Verification

System

Component 1

Monitoring,

learning,

adapting

cgen System

Component 2

Animation 2

MQTT

EXE'17J. Dingel

Mechanism 1: Gateway Capsule

� Using SAP/SPP

• Protocol defines incoming/outgoing messages

• Automatic registration

� Bi-directional

• Incoming messages can trigger transitions

24

External

tool

EXE'17J. Dingel

Gateway Capsule: Example

25EXE'17

Gateway Capsule: Examples

� Monitoring and steering

• Parcel routing system

• https://www.youtube.com/watch?v=Eb

MIgEX9O58

26EXE'17J. Dingel

� Animation and simulation

using Unity

[Diagrams courtesy

Michal Pasternak]

Mechanism 2: MQTT

� Message Queue Telemetry Transport (MQTT)

• Publish/subscribe protocol

• Light-weight, low resource requirements

• Easy to use:

(dis-)connect, (un-)subscribe, publish

• Standardized

� Implementations

• E.g., Eclipse Paho

� Brokers

• E.g., Eclipse Mosquitto

27

Topic Subscribers

“Temperature/bedroom” Component 2

… …

EXE'17J. Dingel

MQTT Support in Papyrus-RT

� In model

• Subscribe(t) in capsule C

° register unwired port of C as SAP under name t

• Publish(t,m) in capsule C

° send m to port of C associated with t

� RTS

• Maintains connection to broker(s) and

topic/broker table

• Sends published messages to corresponding

broker(s)

• Periodically checks brokers for incoming

messages

• Sends incoming message m to port associated

with m

28

Component 2

Broker

RTS

EXE'17J. Dingel

29

Ongoing Research 2

Debugging

EXE'17J. Dingel

Model Debugging: Two Approaches

1. Interpretation

• Pros

° Easier to integrate into MDE environment

• Cons

° Two semantics: Interpreter vs code generator

° Two platforms: Modeling platform vs target platform

2. Executing generated code on target platform

• Pros

° One semantics, one platform

• Cons

° How to implement?

30EXE'17J. Dingel

Existing Approaches

31EXE'17J. Dingel

[Diagram courtesy Mojtaba Bagherzadeh]

Consequences?

Our Approach

Key idea: Use model transformation to enrich model to allow

it to support debugging operations:

• Execution stop and resume (breakpoints),

• variable access,

• collection of execution traces

32EXE'17J. Dingel

[Diagram courtesy

Mojtaba Bagherzadeh]

33
EXE'17J. Dingel

Example: Ping Pong

[Diagram courtesy Mojtaba Bagherzadeh]

34
J. Dingel

Transformation of Structure

[Diagram courtesy Mojtaba Bagherzadeh]

35

User-defined model

Instrumented model

EXE'17J. Dingel

Transformation of Behaviour

[Diagram courtesy Mojtaba Bagherzadeh]

Overview

36EXE'17J. Dingel

[Diagram courtesy

Mojtaba Bagherzadeh]

Pre

runtime

At

runtime

37

List running capsules:
#list

Step execution
#next –c capsule1

View last 10 events
#view –c capsule1 –n 10

Generate sequence diagram:
#seq –c capsuleName

EXE'17J. Dingel

Example: Command Line Interface

[Diagram courtesy Mojtaba Bagherzadeh]

Evaluation

� Instrumentation time

~40sec for model with 400 transitions

� Program size

comparable with existing approaches

� Runtime performance overhead

microseconds per transition

38EXE'17J. Dingel

Resources: Model-level Debugging

� Paper

• M. Bagherzadeh, N. Hili, J. Dingel. Model-level, Platform-

independent Debugging in the Context of the Model-driven

Development of Real-time Systems. ESEC/FSE’17.

� Videos

• CLI: https://www.youtube.com/watch?v=UJ4BYSOrTOQ

• GUI: https://www.youtube.com/watch?v=PvPbV5QkQ9Y&t=8s

� Code with tutorial

• https://github.com/moji1/MDebugger

� Virtual Box image

• https://github.com/moji1/MDebugger

39EXE'17

40

Ongoing Research 3

EXE'17J. Dingel

Changing @ runtime

Supporting Modifications at Runtime

� A.k.a., “hot patching/loading”, dynamic software updating

� As in, e.g., Erlang, Java Hotswap, Unreal engine, MS VS Recode

41

Modify

Build

Exec

Modify

Build

Exec

EXE'17J. Dingel

Supporting Modifications at Runtime (Cont’d)

� Use shared, dynamically loaded and linked objects

• Compile dynamically modifiable capsules into shared objects

• Whenever capsule changes,

° recompile and relink, and

° transfer state

� Challenge

• State transfer can lead to inconsistencies

� Demo

• https://youtu.be/FrJm9NTR-bc

� Ongoing

• Minimizing inconsistencies

• Roll back

42EXE'17J. Dingel

43

Ongoing Research 4

Demonstrator:
PolarSys Rover

EXE'17J. Dingel

� PolarSys Rover

• 2 motors, motor controller

• Line sensor, ultrasonic detection

sensor, camera

• https://www.polarsys.org/projects/polar

sys.rover

� Raspberry Pi 3 Model B

• 1.2GHz 64-bit Quad-core, 1GB RAM

• WLAN, Bluetooth, 4 USB, HDMI,

Ethernet

44/37EXE'17J. Dingel

https://www.youtube.com/watch?v=2kLhRUHGLB4

[UML-RT slides courtesy of Nicolas Hili]

45

Conclusion

EXE'17J. Dingel

Conclusion

MDE with UML-RT and Papryrus-RT

+ Connecting (gateway, MQTT)

+ Debugging

+ Change at RT

+ Distribution

+ Deployment (MARTE)

+ Schedulability

+ Testing

+ ?

= Open source MDE tool infrastructure for (certain kinds of)

IoT applications

46EXE'17

This talk

Future work

J. Dingel

Open Source!

Resources

� http://flux.cs.queensu.ca/mase/papyrus-rt-resources/

47EXE'17J. Dingel

Acknowledgements

� Nicolas Hili, PDF

� Mojtaba Bagherzadeh, PhD

� Karim Jahed, PhD

� Reza Ahmadi, PhD

� Michal Pasternak, MSc

� Harshith Vasanth Gayathri, MSc

� Sudharshan Gopikrishnan, MSc

48EXE'17J. Dingel

49

Thank you …

… for your attention

EXE'17J. Dingel

Hey you shrub, do you always have to

have the last word?

