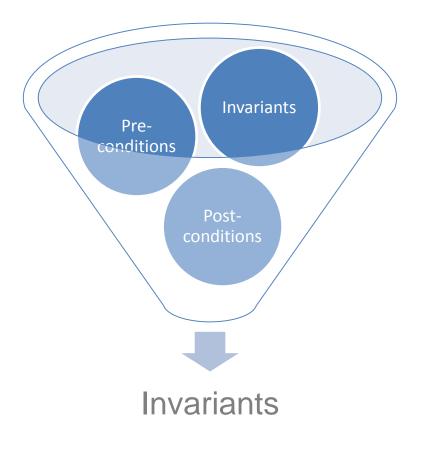
Executing Models: Enhancing Validation by Filmstrip Templates and Transformation Alternatives

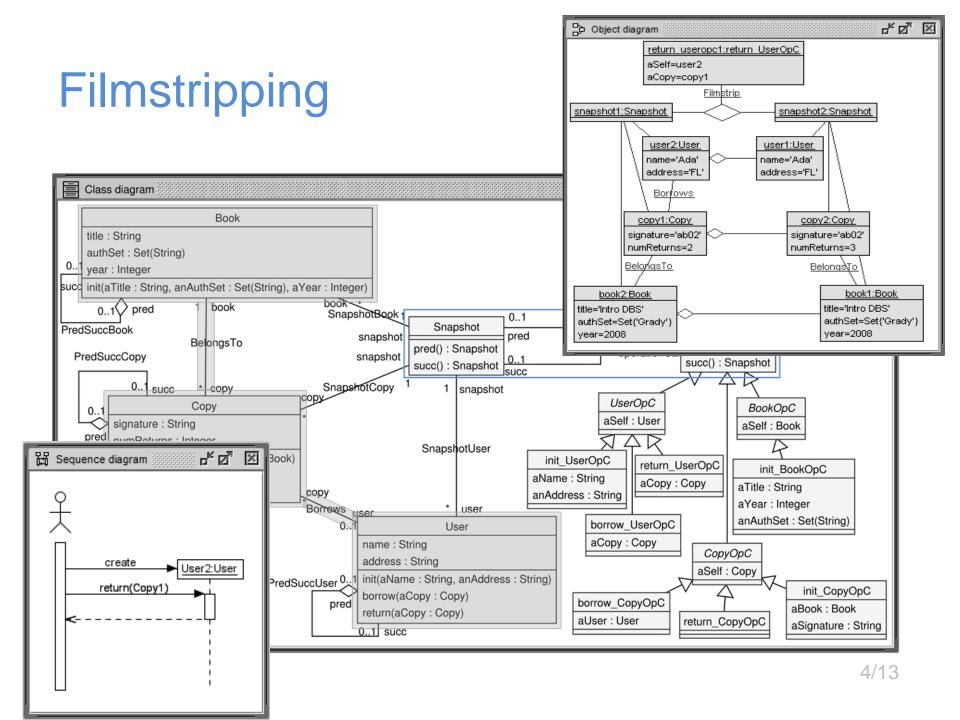
Nisha Desai, Martin Gogolla, Frank Hilken

Database Systems Group University of Bremen, Germany

EXE 2017, Austin

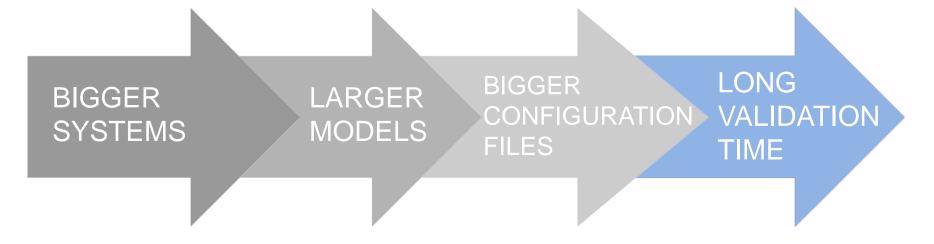
Outline

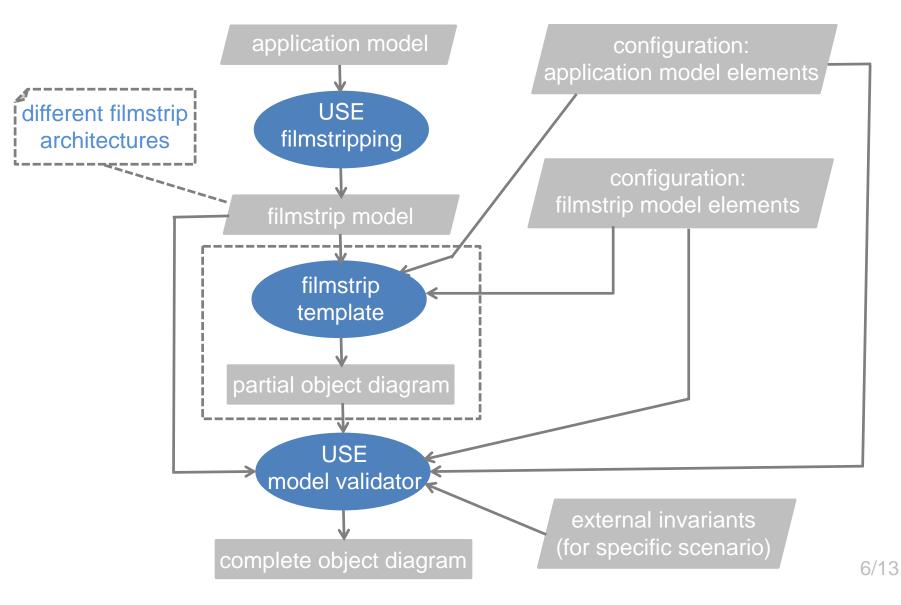

- » Introduction
- » Approach to Behavior Modeling: Filmstripping
- » Motivation
- » Overview on Validation Process
- » Architectures for Filmstripping
- » Filmstrip Templates
- » Study Execution
- » Study Results and Comparison
- » Conclusion and Future Work


Introduction

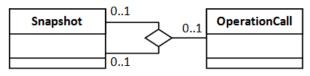
- » Model analysis and property validation and verification crucial for success of MDE
- » USE model validator:
 - » Automatic test case construction
 - » Model validation and consistency check
 - » Analysis of structural properties
- » Application models involve structural and dynamic aspects
- » Filmstripping is used for validation of dynamic aspects

Filmstripping

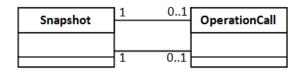

- » Filmstripping transforms pre- and postconditions to invariants
- » Filmstrip model has only structural aspects
- » Dynamic and structural aspects of a UML/OCL model can be explored using filmstripping



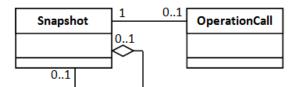
Motivation


* ANALYZING THE IMPACT OF DIFFERENT ARCHITECTURES AND FILMSTRIP TEMPLATES ON EXECUTION TIME OF VALIDATION PROCESS

Overview on Validation Process

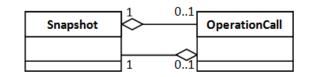


Architectures for Filmstripping

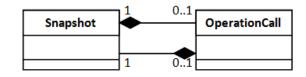


(A) Ternary association [short: Tern Assoc]

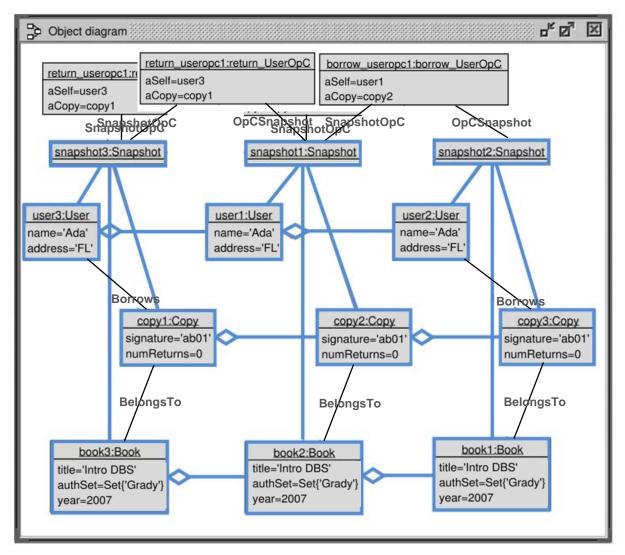
(E) Snapshot OpCall Snapshot as Association [short: SnapCSnap Assoc]


(C) OpCall at Snapshot + Aggregation [short: C@Snap Agg]

(B) OpCall at Snapshot + Association


[short: C@Snap Assoc]

(D) OpCall at Snapshot + Composition [short: C@Snap Comp]



(F) Snapshot OpCall Snapshot as Aggregation [short: SnapCSnap Agg]

(G) Snapshot OpCall Snapshot as Composition [short: SnapCSnap Comp]

Filmstrip Templates

- » Templates consist of the elements which are known from the filmstrip model and given configurations
- » Filmstrip template is constructed before the model validation
- Templates of architecture B, C and D have extra snaphot-snaphot links compared to all other architectures

Study Execution

- » Check the performance of different architectures with filmstrip templates
- » 2 models selected:
 - » Library model
 - » ConcurrentAppend model
- » Two test case scenarios are considered for the study
- » Each test case is executed five times and trimming mean method has been used for average calculation

Study Execution

	Test case 1 Library model	Test case 2 ConcurrentAppend model
Application configuration	1 User, 1 Book, 1 Copy	3 Cells, 1 Append
Invariants	Inital condition: Copy is in library and number of returns is zero. Final condition: Number of returns of the copy is three.	Inital condition: Mention three Cells and one Append with values. Final condition: Append should be finished.
Filmstrip configuration	Snapshot = 77 borrow_UserOpC = 06 return_UserOpC = 06 borrow_CopyOpC = 06 return_CopyOpC = 06	Snapshot = 55 append_AppendOpC = 04 return_AppendOpC = 04 found_AppendOpC = 04 next_AppendOpC = 04
Expected Results	3 Borrow-Return operation calls.	Next-Next-Append-Return operation calls.

Study Results and Comparison

» Result comparision - test case 1

Archi- tecture	A Tern Assoc (min)	B C@Snap Assoc (min)	C C@Snap Agg (min)	D C@Snap Comp (min)	E SnapCSnap Assoc (min)	F SnapCSnap Agg (min)	G SnapCSnap Comp (min)
Test case 1	32.73	0.43	1.34	1.41	2.50	3.23	3.28
	0.13	0.07	0.09	0.08	0.15	0.16	0.16

» Result comparision - test case 2

Archi- tecture	A Tern Assoc (min)	B C@Snap Assoc (min)	C C@Snap Agg (min)	D C@Snap Comp (min)	E SnapCSnap Assoc (min)	F SnapCSnap Agg (min)	G SnapCSnap Comp (min)
Test case 2	90.47	29.13	20.00	20.46	20.15	29.24	27.90
	0.33	0.21	0.22	0.23	0.25	0.29	0.29

Study Results and Comparison

» Average execution time of the test cases using templates

Archi- tecture	A Tern Assoc (min)	B C@Snap Assoc (min)	C C@Snap Agg (min)	D C@Snap Comp (min)	E SnapCSnap Assoc (min)	F SnapCSnap Agg (min)	G SnapCSnap Comp (min)
Test case 1	0.13	0.07	0.09	0.08	0.15	0.16	0.16
Test case 2	0.33	0.21	0.22	0.23	0.25	0.29	0.29
Sum	0.46	0.28	0.31	0.31	0.40	0.45	0.45

Conclusion and Future Work

- » Introduced filmstrip templates and proposed different filmstrip architectures
- » Study revealed that employing filmstrip templates are more efficient in terms of execution time
- » Architecture B, C and D yield better results compared to others
- » Future work:
 - » Development and implementation of automatic generation of the filmstrip templates
 - » Distinguishing application and filmstrip elements in the configuration and user interface

Thanks for your attention!

Nisha Desai nisha@informatik.uni-bremen.de