
Managing Build Configuration Complexity
in Industrial Embedded Systems

- Dynamic Manipulation of Model Transformations using JavaScript

Mattias Mohlin and Elena Strabykina, HCL Technologies

Copyright © 2018 HCL Technologies Limited | www.hcltech.com2

CONTENT

UML-RT models and transformation configurations

Build Variants

Demo

Copyright © 2018 HCL Technologies Limited | www.hcltech.com3

TRANSFORMING UML-RT MODELS TO C++

 A UML-RT model with contained C++ code is a complete specification of an application (e.g. embedded
or IoT application)

 A Transformation Configuration is a model describing how to transform the UML-RT model to a C++
executable or library

RTist
build

Copyright © 2018 HCL Technologies Limited | www.hcltech.com4

UML-RT MODEL

 Behavior described by state machine diagrams and C++ code

 Structure described by class and composite
structure diagrams

 Stored in XML files with embedded C++ code
snippets

Copyright © 2018 HCL Technologies Limited | www.hcltech.com5

TRANSFORMATION CONFIGURATION

 A model containing everything needed for transforming the UML-RT model into a C++ program and
building an executable or library from it

 Stored in text files using the JavaScript language

Copyright © 2018 HCL Technologies Limited | www.hcltech.com6

BUILDING MULTIPLE VARIANTS OF AN APPLICATION

 Problem: How to express variability in a transformation configuration?

▪ Debug vs Release version

▪ Different target platforms (OS, compiler etc.)

▪ Instrumented builds (e.g. purify)

▪ Static analysis (e.g. lint), etc...

 With static transformation configurations, you need one for each variant you want to build...
=> A huge number of transformation configurations to create and maintain!
=> Difficult for users to pick a consistent set of transformation configurations when building the model!

 Inheritance allows to break out common information in separate transformation configurations, but
doesn’t solve the problem (still a huge number of transformation configurations even if they all are small).

 We need dynamic transformation configurations where build properties can be manipulated
programmatically!

Copyright © 2018 HCL Technologies Limited | www.hcltech.com7

BUILD VARIANTS

 Solution: Allow the transformation configuration to be dynamically manipulated at build time

Build Variant – a set of transformation configuration properties that are specific for a certain type of build,
described in a separate JavaScript file.

let tc = TCF.define(TCF.CPP_TRANSFORM);
tc.sources = ['platform:/resource/CM/CPPModel.emx#_uysz8NQ3EeexPbULy_rI8g'];
tc.genUserCodeQualifiers = globals.makeArguments + 'MY_ARGUMENT';
tc.type = CppTransformType.Executable;

tc.makeType = 'Library_makeType';
tc.TargetRTS = '${RSA_RT_HOME}/C++/TargetRTS';

let ext_TC = TCF.load('platform:/resource/Lib/lib.tc');
tc.prerequisites = ext_TC.prer.add('platform:/resource/LibraryProject1/tc/Lib2.js');

let globals = TCF.globals();
globals.makeArguments = '$ARG_GLOBAL';default_settings.js

Main_configuration.js

target.js

validate_override.js

flags.js tc.compileArguments = 'new_compile_arguments';

Copyright © 2018 HCL Technologies Limited | www.hcltech.com8

IMPLEMENTATION OF BUILD VARIANTS APPROACH

 Each build variant script can be called one or two times, by defining one or both of these functions

▪ function preProcess(<args>)

Called before evaluation of the transformation configuration. Set global properties that can be referenced later.

▪ function postProcess(topTC, allTCs, <args>)

Called after evaluation of the transformation configuration. Verify and override user-defined properties.

 Custom arguments can be passed from the build variants script (allows to reuse the same build variant
script for multiple choices)

Copyright © 2018 HCL Technologies Limited | www.hcltech.com9

INTEGRATION WITH IDE

 A build variants declaration file (JavaScript) describes the high-level choices that cause the variability

 The script renders a dynamic user interface to allow the user to make the choices when building

▪ Checkbox for single choice

▪ Drop-down menu for multiple choice

 Each choice is mapped to a build variant script to be applied
to the transformation configuration when it is built

let debug = { name: 'Debug', script: 'debug.js', control : { kind: 'checkbox' },
defaultValue : false, description: 'Build for debugging‘ };

let target = { name: 'Target',
alternatives: [
{name: 'Solaris', script: 'Target.js', args: ['Solaris'], description: 'Settings for Solaris target platform'},
{name: 'Linux', script: 'Target.js', args: ['Linux'], defaultValue: true, description: 'Settings for Linux target platform'},
{name: 'Win64', script: 'Target.js', args: ['Windows'], description: 'Build settings for Windows 64bit'}

]
}

function initBuildVariants(tc) {
BVF.add(debug, target)

}

Copyright © 2018 HCL Technologies Limited | www.hcltech.com10

BUILD CONFIGURATIONS AND BATCH BUILDS

 Each combination of choices made in the build variants user interface is called a build configuration and
can be represented textually

▪ For example: “Debug; Target=Linux” is equivalent to these UI settings

 The build configuration string can be specified as an argument to the model compiler when performing a
batch build (e.g. --buildConfig=“Debug; Target=Linux”)

Copyright © 2018 HCL Technologies Limited | www.hcltech.com11

DEMO

Copyright © 2018 HCL Technologies Limited | www.hcltech.com12

EVALUATION RESULTS

Build Variants approach was evaluated on N model projects and K target platforms:

▪ got K times less number of transformation configurations for maintenance (now it is not required to
create separate transformation configurations for each platform);

▪ less maintenance effort when adding new target platform (instead of N new files with new settings we
need to update only 2 files with Build Variants declaration and Build Variants implementation);

▪ managed to decrease the size of SCM repository where models are stored;

▪ removed inconsistency between end-user builds invoked from the tool and backend builds invoked from
automatic testing system;

▪ reported errors and warning messages during validation of input TCs.

Copyright © 2018 HCL Technologies Limited | www.hcltech.com13

THANK YOU AND JOIN THE HCL TEAM

 DevOps, Agile and Models (MAD @ Models)

▪ Industry speakers

 Modeling Tools Restarted –meet HCL

